Some Distinctions Between Self-Similar and Self-Affine Estimates of Fractal Dimension with Case History
نویسنده
چکیده
Compass, power-spectral, and roughness-length estimates of fractal dimension are widely used to evaluate the fractal characteristics of geological and geophysical variables. These techniques reveal self-similar or self-affine fractal characteristics and are uniquely suited for certain analysis. Compass measurements establish the self-similarity of profile and can be used to classify profiles based on variations of profile length with scale. Power spectral and roughness-length methods provide scaleinvariant self-affine measures of relief variation and are useful in the classification of profiles based on relative variation of profile relief with scale. Profile magnification can be employed to reduce differences between the compass and power-spectral dimensions; however, the process of magnification invalidates estimates of profile length or shortening made from the results. The power-spectral estimate of fractal dimension is invariant to magnification, but is generally subject to significant error from edge effects and nonstationarity. The roughness-length estimate is also invariant to magnification and in addition is less sensitive to edge effects and nonstationarity. Analysis of structural cross sections using these methods highlight differences between self-similar and self-affine evaluations. Shortening estimates can be made from the compass walk analysis that includes shortening contributions from predicted small-scale structure. Roughness-length analysis reveals systematic structural changes that, however, cannot be easily related to strain. Power-spectral analysis failed to extract useful structural information from the sections.
منابع مشابه
Self-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملDecidability on Dube's Self-similar Fractals
Dube proved some undecidability on self-affine fractals. In this paper, we obtain the decidability for self-similar fractal of Dube’s type. In fact, we prove that the following problems are decidable to test if the Hausdorff dimension of a given Dube’s self-similar set is equal to its similarity dimension, and to test if a given Dube’s self-similar set satisfies the strong separation condition.
متن کاملGeometry of Self Affine Tiles I
For a self similar or self a ne tile in R we study the following questions What is the boundary What is the convex hull We show that the boundary is a graph directed self a ne fractal and in the self similar case we give an algorithm to compute its dimension We give necessary and su cient conditions for the convex hull to be a polytope and we give a description of the Gauss map of the convex hull
متن کاملHeart Rate Variability Is a Noisy Time Series Having Self-similar and Self Affine Characteristics
Biological signals are nonlinear and non periodic in nature. The signals show self-similarity in various scales of time. Heart rate variability is a noisy time series having self-similar and self affine characteristics. Its analysis is commonly used in accessing the autonomic nervous system of the human body and in diagnosing of cardiac status and other parameters related to ANS in both normal ...
متن کاملGeometry of Self { Affine Tiles
For a self{similar or self{aane tile in R n we study the following questions: 1) What is the boundary? 2) What is the convex hull? We show that the boundary is a graph directed self{aane fractal, and in the self{similar case we give an algorithm to compute its dimension. We give necessary and suucient conditions for the convex hull to be a polytope, and we give a description of the Gauss map of...
متن کامل